Lachlan Heath

Koondrook Perricoota – Located Murray River Floodplain Upstream From Barham NSW

Engineering structure and channels to divert flows from Murray River through the forest, in order to mimic natural flooding events.

AUSIPILE was the contractor involved in the installation of permanent cantilevered sheet piling for the construction of the flood gates.

Bowen Hills – Kedron – Toombul

Airport Link is a 6.7 kilometre multi-lane electronic free-flow toll road with dual 5.7 km tunnels, connecting Brisbane’s CBD, the North-South Bypass Tunnel and the Inner City Bypass with Brisbane’s Northern Suburbs and Brisbane Airport.

AUSIPILE was involved with numerous foundation and construction access projects across the site including; DR cased secant walls, large diameter bored piles with hard rock sockets, CFA piles, Sheetpiles & Composite Piles.

63 Skyring Terrace, Newstead – CFA Secant Wall and Foundation Piles

25 Storey residential building.

Design and construction of anchored 610mm diameter cased CFA secant pile wall for 2 level basement, followed by 187 no. 750mm and 600mm diameter foundation and crane base piles, up to 25m long. Piles installed from natural surface & basement levels.

Design and installation of braced temporary sheet piling with deadmen for lift core excavations.

Victoria Street, Toowoomba – Sheet Pile Walls and Bridge Piles

Infrastructure project involving drainage channel upgrades and new 3 span 4 lane bridge.

Installation of 656 l.m of permanent sheet pile walls initially pitched and vibro-driven into XW rock using our Bauer RTG19 piling rig, with final driving to set using a crane mounted BSPCX110 hammer.

Installation of 83 x 900 diameter and 76 x 750 diameter soldier piles, and 29 x 1200 diameter bridge piles, temporary and permanently lined.

Support for Piling, Civil & Building Projects

[info]Ausiplie will offer support in the preparation and complete scope of works required and will manage the whole program from start to finish with our dedicate team of professionals from the planning and delivery of equipment and hand over to builder.[/info]

[info]At Ausipile we can arrange complete packages solutions to provide the best overall program and cost options to allow your project to run on time and on budget.[/info]

We have years of experience dealing with this problem keep your project on time and with in budget is what we aim to achieve this on every project.

[info]Shotcrete is a mortar or concrete that is pneumatically projected or sprayed by a nozzle with high velocity on the prepared surface. The whole system is also known as spraycrete.[/info]

Spraying shotcrete walls.

Types of Shotcrete Walls

There are basically two types of shotcreting processes

  • Dry-mix process and
  • Wet-mix process.

Advantages

Shotcrete is very useful and has great advantages over conventional concrete in a new variety of construction and repair works.

  • Excellent bonding in nature makes the concrete layers very strong.
  • It is more economical than conventional concrete and requires less formwork.
  • The Concrete can be applied by a nozzle from a safe distance.

Disadvantages

  • The production cost is very high.
  • Dusting problems.
  • So many wastages of concrete.

Applications

  • Thin overhead vertical or horizontal surfaces.
  • Curved or folded sections like tunnels, canals, reservoirs, or swimming pools, and pre-stressed tanks.
  • Stabilized rock slopes.
  • Restoration and repairing of old building and fire-damaged structure.
  • Waterproofing walls etc.

[info]Both permanent and temporary techniques available for providing support at locations the shoring wall design requires.[/info]

Soil nailing and ground anchoring.

Soil Nailing

Advantages of Soil Nailing

Advantages associated with soil nailing fall into three main categories: Construction, Performance, and Cost.

Construction

  • Soil nail walls require smaller ROWs than most other competing systems. This is also true for ground anchors as soil nails are typically shorter.
  • Soil nail walls are less disruptive to traffic and cause less environmental impact compared to other construction techniques such as drilled shafts or soldier pile walls, which require relatively large equipment.
  • Soil nailing causes less congestion in the excavation when compared to braced excavations.The installation of soil nail walls is relatively fast.
  • Easy adjustments to nail inclination and location can be made when obstructions are encountered, such as boulders, piles or underground utilities. As a comparison, adjustments in the horizontal position and orientation of ground anchors often require changes to the soldier pile layout or the addition of waler beams, making adjustments in the field costly.
  • Soil nail wall installation is not as restricted by overhead limitation as in the case of soldier pile installation. This advantage is particularly important when construction occurs under a bridge.
    Soil nailing may be more cost-effective at sites with remote access because the smaller equipment is more readily mobilised.
  • Soil nails are installed using equipment that is multipurpose and can be used for other substructure elements such as underpinning or protection of adjacent, movement-sensitive structures.
  • A relatively large number of qualified soil nail contractors exists.
  • A widespread knowledge about soil nailing exists among engineers.
  • Soil nail walls can accommodate curves and “bends” more easily than other top-down construction wall systems, which would otherwise require straight wall segments.

Performance

  • Soil nail walls are relatively flexible and can accommodate comparatively large total and differential movements.
  • The measured deflections of soil nail walls are usually within tolerable limits in roadway projects when the construction is properly controlled.
  • Soil nail walls have performed well during seismic events.
  • Soil nail walls have more redundancy than anchored walls because the number of reinforcing elements per unit area of wall is larger than for anchored walls.
  • Sculpted facings, which can be applied to soil nail walls, give a more natural appearance than other finishes, to fit in with the surrounding environment.

Cost

  • Conventional soil nail walls tend to be more economical than conventional concrete gravity walls taller than approximately 4 to 5 meters.
  • Soil nail walls are typically equivalent in cost or more cost-effective than ground anchor walls when conventional soil nailing construction procedures are used.

Limitations

The main limitations associated with soil nailing are:

  • In projects where strict wall movement criteria exist, additional measures to limit deflections may be required. These requirements would add cost. If very strict movement criteria exist, soil nails may not be a feasible option for the project.
  • The existence of utilities behind the wall will likely create restrictions to the location, inclination, and length of soil nails, particularly in the upper rows.
  • Soil nail walls are not well-suited where large amounts of groundwater seep into the excavation. Soil nail walls require maintaining a temporary unsupported excavation face during construction.
  • Permanent soil nail walls require permanent underground easements.
  • Soil nail tendons may interfere with certain types of communication lines (e.g., optic fiber) running immediately adjacent to soil nail walls.

Ground ANCHORING

Advantages of Ground Anchoring

  • Practical alternative to propping
  • Versatile form of earth retention
  • High loads can be obtained in relatively poor ground conditions
  • Driven anchors can be used in a variety of soil conditions
  • Used to install ‘active’ forces into structures
  • Enhanced durability including resistance to corrosion and resistance to alkalis and solutions in soils increase their life and greatly reduce the need for maintenance, thereby decreasing life-cycle costs.
  • Driven anchors create a low environmental impact
  • Permanent anchors are frequently used in new ports and harbour developments, road schemes, dam refurbishments and for the tensile support
of new sports stadium structures.
  • Maximised working spaces can be created for deep excavations on civil engineering projects such as cofferdams, new build or extensions, cut and cover tunnels, to name a few.
  • Can produce valuable savings in programme and budget.

Disadvantages

  • It is necessary to use specifed equipment, exprienced professional engineers.
  • It is difficult to apply anchors in weak soil and to implement anchors with great depth.
  • Anchor execution would affect the land of surrounding construction works, which must be accepted by their owners.

Assessment Package

Have you covered all bases ?